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Statistical models of community-level homeless rates typically as-
sume a linear relationship to covariates. This linear model assump-
tion precludes the possibility of inflection points in homeless rates –
thresholds in quantifiable metrics of a community that, once breached,
are associated with large increases in homelessness. In this paper, we
identify points of structural change in the relationship between home-
less rates and community-level measures of housing affordability and
extreme poverty. We utilize the Ewens-Pitman attraction (EPA) dis-
tribution to develop a Bayesian nonparametric regression model in
which clusters of communities with similar covariates share common
patterns of variation in homeless rates. A main finding of the study
is that the expected homeless rate in a community begins to quickly
increase once median rental costs exceed 30% of median income, pro-
viding a statistical link between homelessness and the U.S. govern-
ment’s definition of a housing cost burden. Our analysis also identifies
clusters of communities that exhibit distinct geographic patterns and
yields insight into the homelessness and housing affordability crisis
unfolding on both coasts of the United States.

1. Introduction. Homeless rates in the United States vary signifi-
cantly from one community to another. According to the U.S. Department
of Housing and Urban Development (HUD), roughly 1 in 1,250 people were
counted as homeless in Glendale, CA in January 2017, while 1 in 70 peo-
ple were counted as homeless in Mendocino County, CA that same month
(HUD, 2017). In these rate estimates, HUD uses a naive calculation, divid-
ing the raw counted number of homeless by a community’s total population.
Due to systematic inaccuracies in homeless count data, this is methodolog-
ically problematic and naive estimates should be used with caution (Glynn
and Fox, 2019; Hopper et al., 2008); nevertheless, the more than seventeen-
fold increase in the HUD-reported rate of homelessness within the state of
California suggests that homelessness is critically influenced by features of
individual communities.

In this study, we investigate potentially nonlinear relationships between
homeless rates and community-level predictors. Quantifying the association
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between homeless rates and covariates of a community is practically useful
along two dimensions. First, it sharpens public focus on the social forces
related to homelessness – leading to improved monitoring and intervention
opportunities to help the most vulnerable citizens. Second, it provides a set
of measurable objectives to guide public policy.

A significant number of studies have investigated statistical associations
between covariates of a community and homelessness1 (Corinth, 2015; Byrne
et al., 2013; Lee et al., 2003; Quigley et al., 2001); however, existing statis-
tical models of homeless rates alternate between two extreme assumptions.
At one extreme, analyses assume a single global parameter so that the rela-
tionship between homelessness and housing costs, for example, is the same
nationwide (see, e.g., Byrne et al. (2013)). Assuming a single global parame-
ter is rigid, and it ignores the possibility that local social structures mitigate
(or exacerbate) the role that housing costs play in housing vulnerability. At
the other extreme, Glynn and Fox (2019) endow each community with a
local parameter in a hierarchical statistical model. Assuming local effects
for each community is overly flexible, as there is scarce data on the size of
the homeless population in each community – leading to imprecise estimates
of model parameters. In the presence of scarce data, there is a trade-off be-
tween model flexibility and the precision of parameter estimates. Between
these extremes of model rigidity and flexibility exists a middle ground where
clusters of similar communities share model parameters; however, inferring
covariate-dependent clusters from scarce data is a challenging statistical
learning problem.

We have two primary objectives in our analysis:

(O1) Flexibly estimate the relationship between community co-
variates and homeless rates to identify points where struc-
tural changes in the relationship occur; and

(O2) Identify peer groups of communities for development and
evaluation of policy interventions.

The statistical challenge is to estimate the complex functional relation-
ship between homeless rates and community-level covariates from scarce
data. Because there is limited variation in the features of a community from
one year to the next, data from a single community is concentrated in a

1In this paper, we examine inter-community variation in homeless rates based on point-
in-time counts across HUD-defined continuums of care. An alternative approach to assess-
ing the relationship between community factors and homeless rates is to look at neighbor-
hoods within a city as “communities” and measure rates of shelter admission from those
communities based on last address. See, for example, Culhane et al. (1996) and Rukmana
(2008)
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limited region of predictor space. Estimating the complete response surface
requires pooling data across related communities and fusing together local
estimates. To estimate the response surface locally, we pool data from com-
munities with similar covariates utilizing a Bayesian nonparametric mixture
model.

The methodological contribution of the study is EPA regression, a
novel Bayesian nonparametric regression framework based on the Ewens-
Pitman attraction distribution (Dahl et al., 2017). EPA regression is de-
signed to estimate nonlinear response surfaces when observational units gen-
erate data that is both scarce and concentrated in one region of predictor
space. EPA regression offers important modeling advantages compared to ex-
isting Bayesian nonparametric regression alternatives such as BART (Chip-
man et al., 2010), Gaussian process regression (Williams and Rasmussen,
1996), and Dirichlet process mixture models (Antoniak, 1974; Escobar and
West, 1995). Further, it allows us to achieve both objectives (O1) and (O2).
EPA regression explicitly models the partition of communities, and cluster
probabilities depend on covariates. Unlike BART, which partitions predictor
space into rectangular boxes, EPA regression offers a more flexible partition
of predictor space. Gaussian process regression does not explicitly model
cluster structure, and Dirichlet process mixtures, which do model cluster
structure, do not model cluster dependence on covariates.

The EPA distribution is a prior distribution over the space of parti-
tions indexed by pairwise similarity between observational units (commu-
nities in our case). The applied intuition is that communities with similar
covariates have a higher prior probability of membership in the same cluster
than communities with covariates that are dissimilar (Page and Quintana,
2018). We utilize the EPA distribution rather than dependent Dirichlet pro-
cesses (MacEachern, 2000) or distance-dependent Chinese restaurant pro-
cesses (Blei and Frazier, 2011) so that we directly model the partition of
communities with covariate information. Three important aspects of our
model are (i) the number of clusters; (ii) cluster membership; and (iii) the
relationship between community covariates and homelessness within clusters
are all jointly estimated as part of the inference procedure. We compute fully
Bayesian posterior distributions with a custom Markov chain Monte Carlo
algorithm that seamlessly combines the Polya-Gamma data augmentation
strategy of Polson et al. (2013) with the Gibbs sampling algorithm of Dahl
et al. (2017) and a forward filtering backward sampling (FFBS) algorithm
to account for community-specific temporal trends.

Our analysis focuses on three measures of a community: rental costs,
measured by Zillow’s Rent Index (ZRI), median household income, and the
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percent of residents living in extreme poverty. While the cost of housing
is consistently identified as a predictor of homelessness both across (Byrne
et al., 2013) and within (Glynn and Fox, 2019) communities, housing costs in
absolute dollar amounts are an incomplete measure of housing affordability.
The combination of housing costs and household income – specifically, the
percent of income spent on housing costs – more completely reflects the
relative affordability of housing across communities. By focusing on median
housing costs as a share of median income, we more directly compare housing
affordability in communities with different housing markets and economies.
While median housing affordability measures account for varying housing
markets and income levels, they do not reflect the size of the population
in a community whose income is inadequate to meet the cost of housing.
To control for the size of the population in each community that is most
vulnerable to homelessness, we also include in our model the percent of a
community living in extreme poverty.

We identify a period or structural change in homeless rates when hous-
ing costs in a community are between 30-34% of median income, with the
most likely inflection point occuring at 32%. Once housing costs enter the
30-34% of median income region, the expected homeless rate in a commu-
nity increases sharply. We also find three dominant modes of variation in
homeless rates, with 373 of 381 total communities in our analysis falling into
one of three clusters: communities in the first cluster – primarily located in
the midwest, mid-Atlantic, and southeast – tend to have very low homeless
rates and modest housing costs; communities in the second cluster – includ-
ing most of New England, Florida, the mountain west and central United
States – have intermediate homeless rates and housing costs on par with the
national average; communities in cluster three, which span much of the west
coast and include large metropolitan areas on the east coast, have very high
homeless rates and high costs of housing.

The paper proceeds as follows: in Section 2, we describe the data used in
our analysis; in Section 3, we present our EPA regression model for homeless
populations and describe choices for prior distributions; in Section 5, we
present posterior predictive distributions for homeless rates over a range
of housing affordability and extreme poverty levels, and we also identify
clusters of communities sharing similar associations; in Section 6, we discuss
the applied contribution of our findings and related policy considerations.

2. Data. The data used in our analysis spans the years 2011 to 2017
and comes from three sources: HUD, the American Community Survey
(ACS), and the real estate analytics firm Zillow.
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Each year, HUD produces a nationwide estimate of the number of peo-
ple experiencing homelessness on a single night. The national estimate is
based on local enumeration efforts called point-in-time (PIT) counts. While
the PIT counts are conducted in January, the data is typically released the
following November. At the local level, counts are conducted in roughly 4002

continuums of care (CoCs), geographic units that coordinate support ser-
vices for homeless and whose boundaries are typically coterminous with a
single city, a single county, or a group of counties. In 2017, PIT estimates
were produced for 399 CoCs across all 50 states, the District of Columbia,
Puerto Rico, the U.S. Virgin Islands, and Guam.

To estimate homeless rates, it is essential to know the relative size of
CoCs; however, the total population of a CoC is not reported by HUD.
Discrepancies between geographic boundaries of CoCs and boundaries of
geographic units for which total population estimates are made available
by the U.S. Census Bureau mean that total population estimates for some
CoCs are not readily available. To overcome this mismatch, we develop a
crosswalk between HUD CoCs – the most granular geographic unit for which
homeless data is available nationally – and census tracts. To match census
tracts with CoCs, we utilize a process conceptually similar to that described
by Byrne et al. (2013). Specifically, we use geospatial data from HUD on the
boundaries of each CoC and compute the geographic centroid of each census
tract. If the tract centroid falls within the boundaries of a CoC, we match
the whole tract to the CoC. Based on this assignment of tracts to CoCs and
tract-level ACS 5-year population estimates, we construct approximate total
population measures for each CoC. For example, to construct the CoC total
populations in 2011, we use the 2007-2011 ACS 5-year estimates. These CoC
total population estimates and PIT counts facilitate comparisons of homeless
rates across communities of various sizes. We have made the code used to
conduct the geospatial matching and construct the CoC total population
estimates publicly available on the GitHub page of one of the authors (Byrne,
2018).

We focus our analysis on three particular covariates of a community:
rental costs, measured by Zillow’s rent index (ZRI), median household in-
come, and the percent of residents living in extreme poverty. Median house-
hold income data and the percent of residents living in extreme poverty
are also reported in ACS. We weight tract-level measures of median income
and extreme poverty by the tract-level populations and aggregate to con-

2The exact number of CoCs varies from year to year due to the creation or dissolution
of CoCs or the merger of two or more existing CoCs. In 2007, there were 461 CoCs; in
2017 there were 399.
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struct CoC-level measures of median household income and rates of extreme
poverty. To measure rental costs, we follow Glynn and Fox (2019) and utilize
a custom-computed ZRI. The critical difference in the rental data for this
analysis and that used by Glynn and Fox (2019) is that in the present study,
Zillow directly computed a rent index for each CoC based on geospatial data
provided by HUD. The rent index methodology is identical to Zillow’s ex-
isting ZRI methodology (Bun, 2012), but it is brought to the non-standard
CoC geographies – providing a measure of rent not previously available to
researchers utilizing PIT count data. Table 1 presents a snapshot of the data
for the New York City CoC (NY-600). While countless measures of a com-
munity are potentially associated with homelessness – including apartment
vacancy rates, unemployment rates, demographics, etc. – most are highly
correlated with the covariates that we include in our analysis.

Count Population ZRI ($) Income ($) Poverty (%)

2011 51,123 7,944,958 1,738.62 54,974.00 8.60
2012 56,672 8,009,322 1,768.21 55,510.05 8.82
2013 64,060 8,074,863 1,843.62 56,036.71 9.03
2014 67,810 8,159,782 2,010.27 57,029.83 9.08
2015 75,323 8,231,358 2,175.81 57,758.77 8.95
2016 73,523 8,268,601 2,322.79 59,552.74 8.79
2017 76,501 8,305,844 2,354.98 62,552.42 8.46

Table 1
Homeless count and community covariates of New York City CoC (NY-600), including

all five burroughs of New York City.

3. A Bayesian nonparametric model for homeless counts.

3.1. Modeling homeless rates as latent variables. Modeling homeless
rates requires some care, as several data quality challenges prevent simply
dividing PIT counts in a given year by the total CoC population. Hopper
et al. (2008) provide evidence that street counts do not fully reflect the size
of the homeless population in a community. This systematic undercount
of homeless populations artificially lowers homeless rates and necessitates
modeling the mechanism by which individuals are excluded from PIT counts.
Uncertainty in the size of the homeless population is one aspect of the data
quality challenge. Uncertainty in the total population of each CoC is a second
aspect. While we observe the ACS 5-year estimates of total population at
the tract level, tract populations are aggregated to form a noisy estimate
at the CoC level. At both the tract and CoC level, the total population is
not exactly known. Modeling noise in the numerator and denominator of
a rate calculation allows for a more complete accounting of uncertainty in
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homeless rates.
To address these data quality challenges, we adopt the modeling frame-

work proposed by Glynn and Fox (2019) and treat unobserved homeless rates
as latent variables in a hierarchical Bayesian statistical model. The hierar-
chical model has three levels: (i) a component model for the total population
of CoC i in year t, denoted Ni,t; (ii) a component model for the unobserved
total homeless population, denoted Hi,t; and (iii) a component model for
the counted number of homeless, denoted Ci,t. In this hierarchical model,
uncertainty in Ni,t and Hi,t propagate to estimates of the latent homeless
rate, denoted pi,t. We summarize critical components of the Glynn and Fox
framework here.

Total Population. The total population of CoC i in year t is modeled
with a Poisson random variable,

Ni,t|λi,t ∼ Poisson(λi,t).(3.1)

The expected total population in year t, λi,t, is further modeled over time in
a way that admits a forward filtering backward sampling algorithm to infer
λi,t from the ACS 5-year estimates from 2011-2017. We refer the reader to
Glynn and Fox (2019) for a discussion of prior distributions for λi,t, which
are not the core focus of the current study.

Total homeless population. The total number of homeless Hi,t is a small
subpopulation of the CoC’s total population. To model the size of the home-
less subpopulation conditional on the total population of the CoC, a bino-
mial thinning step is employed,

Hi,t|Ni,t, pi,t ∼ Binomial(Ni,t, pi,t).(3.2)

While Hi,t is modeled as a latent variable given Ni,t, it is important to note
that Hi,t itself is not directly observed. We treat Hi,t as missing data and
impute it as part of our model fitting procedure. The homeless rate, pi,t, is
the focus of Section 3.2.

Homeless count. The counted number of homeless, a quantity less than
or equal to Hi,t, is modeled as a conditionally binomial random variable

Ci,t|Hi,t, πi,t ∼ Binomial(Hi,t, πi,t).(3.3)

The parameter πi,t ∈ [0, 1] is the probability that a person who is homeless
will be counted as homeless. We adopt priors for πi,t utilized by Glynn
and Fox (2019) to carry out our analysis. As Hi,t is not observed, it is not
possible to learn πi,t. We view πi,t as a nuisance parameter and integrate
over it so that the marginal model Ci,t|Hi,t is beta-binomial distributed. The
methodological novelty is presented in Section 3.2.
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3.2. EPA regression model for pi,t. The primary modeling innovation
of the study is a mixture model for pi,t based on the EPA distribution. As
outlined in 3.2, homeless rate pi,t is the unobserved probability of homeless-
ness in a Bayesian logistic regression. We transform pi,t to the real line with
a logit transformation

ψi,t = log

(
pi,t

1− pi,t

)
= F ′iβi,t +X ′i,tφi + εi,t, εi,t ∼ N(0, σ2ψi

).(3.4)

The log odds of homelessness in CoC i in year t, denoted ψi,t, is modeled as
the composition of a dynamic latent factor F ′iβi,t and the regression X ′i,tφi.
We discuss each in turn.

EPA Regression X ′i,tφi. The p×1 vector Xi,t is a set of community-level
predictors and φi is a p × 1 vector of regression coefficients. Our modeling
objective is to induce a shared parameter vector across all CoCs in the same
cluster. To achieve this objective, we reparameterize the collection φ1, . . . , φn
by the partition πn = {S1, . . . , Sqn} and shared cluster-level coefficients
φ̃ = (φ̃1, . . . , φ̃qn). The partition πn splits the CoC index set {1, . . . , n}
into qn mutually exclusive and non-empty subsets S1, . . . , Sqn . When index
i ∈ Sk, we say that CoC i belongs to cluster k and define cluster membership
variable Zi = k. The regression vector φi is then constructed from the set of
unique p× 1 vectors φ̃ = {φ̃1, . . . , φ̃qn} so that

φi =

qn∑
k=1

φ̃k1{Zi=k},(3.5)

where each φ̃k is independently drawn from a p-dimensional Normal distri-
bution, φ̃k ∼ N(µ0,Σ0). Hyperparameter choices for µ0 and Σ0 are discussed
in Section 3.3.

In this study, we include a leading one in covariate vector Xi,t (e.g.,

Xi,t =
[
1 ZRIi,t/MedianIncomei,t ExtPovertyi,t

]′
). The leading one re-

sults in a shared cluster-level intercept or expected rate of homelessness.
The model for inducing shared parameters in clusters of CoCs is com-

pleted by an EPA prior distribution over all possible partitions of CoCs. The
EPA prior distribution for the partition of CoCs, p(πn|α, δ, f,ω), is indexed
by a concentration parameter α (similar to the Dirichlet process), a discount
parameter δ ∈ [0, 1), and similarity function f . The EPA distribution, which
depends on the sequence in which CoCs are assigned to clusters and thus
not exchangable, is also indexed by a permutation of CoC indices denoted
ω = (ω1, . . . , ωn).
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Cluster assignment probabilities depend on CoC covariates through
similarity function f . The similarity function f : R3 → (0, 1] maps dis-
tance between CoCs in covariate space to the unit interval, quantifying the
pairwise similarity between two CoCs,

f(Xωj ,T , Xωi,T ) = exp{−τ ||Xωj ,T −Xωi,T ||2}.(3.6)

CoCs ωi and ωj with identical covariates will have a similarity of one. If
their covariates are far apart in R3, the similarity will be closer to zero.
Decay in similarity is governed by temperature τ , a hyperparameter chosen
by the modeler. In this analysis, we let τ = 0.35 so that two CoCs ωj
and ωi with ||Xωj ,T − Xωi,T ||2 = 10 are quite different, with similarity of
f(Xωj ,T , Xωi,T ) = 0.03. For example, two CoCs that have the same level of
extreme poverty but housing affordability measures that differ by 10% have
very little similarity between them and a higher prior probability of being
in different clusters. As τ increases, the probability that all members of a
cluster are located near each other in predictor space increases as well. We
find that our results are robust to the choice of τ .

The probability mass function p(πn|α, δ, f,ω) is constructed from the
sequential product of conditional probabilities

p(πn|α, δ, f,ω) =
n∏
`=1

p`(α, δ, f,π(ω1, . . . , ω`−1),(3.7)

where p1(α, δ, f,π0) = 1. For ` > 1, p`(α, δ, f,π(ω1, . . . , ω`−1)) is the prob-
ability that CoC ω` is assigned to cluster k given the previous assignments
of CoCs ω1, . . . , ω`−1, parameters α and δ, and similarity function f .

p`(α, δ, f,π(ω1, . . . , ω`−1)) = Pr(Zω`
= k|α, δ, f,π(ω1, . . . , ω`−1))(3.8)

=



(
`−1−δq`−1

α+`−1

) ∑
{ωs:Zωs=k}

f(Xω`,T
,Xωs,T )

`−1∑
s=1

f(Xω`,T
,Xωs,T )

, for k = 1, . . . , q`−1

α+δq`−1

α+`−1 for k = 0 (e.g., a new cluster)

(3.9)

where q`−1 is the number of clusters (subsets) in the partition of the first
` − 1 CoCs, π(ω1, . . . , ω`−1). Note that the probability of assignment de-
pends on the order in which the CoCs are assigned. We address this non-
exchangeability issue by utilizing a prior distribution for permutations and
numerically integrating over all possible permutations in our MCMC algo-
rithm (see MCMC details in the Supplement (Glynn et al., 2020) ), result-
ing in a joint posterior distribution that is invariant to the ordering of the
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CoCs. Following Dahl et al. (2017), we use a uniform prior distribution so
that p(ω) = 1

n! for all permutations.
The EPA distribution depends on the ratio of similarities∑

{ωs:Zωs=k}
f(Xω`,T , Xωs,T )

`−1∑
s=1

f(Xω`,T , Xωs,T )

.

The numerator is the sum of similarity between CoC ω` and all other CoCs
assigned to cluster k. The denominator is the total sum of similarity across all
previously assigned `−1 CoCs. Taken together, the ratio is the proportional
attraction of CoC ω` to cluster k. By fixing δ = 0, the cluster assignment
process is a modified Chinese Restaurant Process. In fact, if the similarity
function is constant (e.g., f(Xω`,T , Xωs,T ) = 1 ) and δ = 0, then the EPA
distribution simplifies to the partition distribution implied by the Dirichlet
process. See Section 4.1 of Dahl et al. (2017). For this reason, we fix δ = 0
and interpret the induced prior distribution for the collection (φ1, . . . , φn) as
a stochastic process prior that is similar to the Dirichlet process but – due
to the EPA distribution over πn – tilts a CoC’s random cluster assignment
towards a cluster where other members share similar covariates.

Innovation variance σ2ψi
. The number of clusters qn is significantly im-

pacted by the choice of innovation variance σ2ψi
in 3.4. If the innovation

variance is small, the variation of log odds around a particular regression
line is tight, and many clusters are needed to explain variation in the n = 381
CoCs. As the innovation variance σ2ψi

increases, larger deviations in homeless
rates from the cluster-level regression fit are expected, and fewer clusters are
needed. We model each σ2ψi

with an inverse gamma (IG) distribution, allow-
ing the data to appropriately inform the innovation variance and number of
clusters.

σ2ψi
∼ IG(aψ, bψ)(3.10)

A consequence of this model choice for σ2ψi
is that conditional on the

latent factor βi,t and φi, the log odds of homelessness p(ψi,t|βi,t, φi) =∫∞
0 p(ψi,t|βi,t, φi, σ2ψi

)p(σ2ψi
)dσ2ψi

is t-distributed. The heavy tails of ψi,t|βi,t, φi
allow for CoC-specific variation in homeless rates and a regression model that
is robust to outlier homeless counts driven by idiosyncratic local events.

Dynamic latent factor βi,t. The EPA regression coefficient φi models
variation in ψi,t associated with predictors Xi,t; however, there are many
covariates of a community that are either excluded from Xi,t or not directly
observed. To account for these unobserved local covariates, we include a
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CoC-level dynamic latent factor F ′iβi,t, allowing for small departures from
the cluster-level regression that may be due to local policies, cultural atti-
tudes toward homelessness, affordable housing initiatives, and many other
difficult to observe local factors. The F ′iβi,t term reflects whether the envi-
ronment in CoC i contributes to or reduces homelessness beyond the level
associated with predictors Xi,t in a specific cluster. To account for tempo-
ral trends in these latent factors at the CoC-level, we model βi,t with a
two-dimensional state-space model

βi,t = Aβi,t−1 + wi,t, wi,t ∼ N(0,W ).(3.11)

The dynamic latent factor model in 3.11 makes two important contributions:
first, the 2 × 1 βi,t vector provides a mechanism to include (in aggregate)
the community features that are excluded from Xi,t; second, it allows for
temporal trends in homeless rates that are not well explained by predictors
Xi,t. The locally linear trend model for βi,t is achieved by choosing A =[
1 1
0 1

]
and F ′i =

[
1 0

]
. See West and Harrison (1997) for more detail on

dynamic model structures.
We only include the housing affordability and extreme poverty covari-

ates in the EPA regression because previous research has found that related
covariate-dependent clustering methods, such as the model of Müller et al.
(2011), work best with only a few covariates (Page and Quintana, 2018).
Rather than controlling for additional covariates in the EPA regression, we
have grouped the aggregate contribution of excluded variables into a single
latent factor. This strategy allows us to use only a few covariates, as recom-
mended by Page and Quintana (2018), and still estimate the CoC-specific
latent factor, serving as an aggregate, albeit difficult to interpret, latent
control variable.

3.3. Prior choices. Prior distributions for (βi,0, α, σ
2
ψi

) and hyperpa-
rameters µ0 and Σ0 in the base measure for φi are chosen by matching the
first two moments of the implied prior distribution of ψi,0 to the empiri-
cal distribution for the log odds of homelessness computed from 2010 data.
Since the data used in our analysis begins in 2011, we use data from 2010
to inform priors. The empirical distribution of log odds of homelessness
in 2010 is unimodal and symmetric with sample mean −6.24 and sample
variance 0.69 (see Figure 1a, which also presents the marginal prior for
ψi,0). The expectation of ψi,0, computed by taking the expectation of 3.4, is

E[ψi,0] = F ′i,0E[βi,0] +X ′i,0E[φi]. We choose E[βi,0] =
[
0 0

]′
to encode our

prior belief that the expected homeless rate in a community is the cluster-
level contribution from CoC-predictors, E[ψi,0] = X ′i,0E[φi]. The choice of
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E[φi] is akin to choosing mean µ0. We utilize PIT counts from 2010 on

chronic homelessness to inform the first element µ
(1)
0 = −8.28. Remaining

elements of µ0 are chosen so that the difference between the sample mean in

2010 and µ
(1)
0 is divided evenly across coefficients for housing affordability

and extreme poverty, and µ
(2)
0 = µ

(3)
0 =

−6.24−µ(1)0

1
n

n∑
i=1

(
X

(2)
i,0 +X

(3)
i,0

) . When we include

CoC data on housing affordability, X(2), and the rate of extreme poverty,
X(3), we compute µ′0 =

[
−8.28 0.061 0.061

]
.

(a) Moment Matching (b) Intercept (c) Affordability

Fig 1: Left: The empirical distribution of log odds of homelessness in 2010
and the implied prior distribution for ψi,0. Middle: the prior and poste-

rior distributions for φ̃
(1)
k , the parameter associated with cluster intercepts.

Right: the prior and posterior distributions for φ̃
(2)
k , the parameter associ-

ated with cluster housing affordability.

With the means of prior distributions chosen so that E[ψi,0] matches
the sample mean in the 2010 data, we follow a similar strategy in choosing
prior variances. The objective is to compose V ar(ψi,0) from contributions
that are consistent with the modeler’s uncertainty in each parameter. The
variance V ar(ψi,0) may be decomposed with an application of the law of
total variance,

V ar(ψi,0) = E[V ar(ψi,0|βi,0, φi, σ2ψi
)] + V ar(E[ψi,0|βi,0, φi, σ2ψi

])(3.12)

= E[σ2ψi
] + F ′i,0V ar(βi,0)Fi,0 +X ′i,0V ar(φi)Xi,0.(3.13)

We begin by fixing the latent factor covariance matrix V ar(βi,0) =
diag(0.1, 1 × 10−6), which allows for meaningful systematic (as opposed to
idiosyncratic) deviations in a community’s homeless rate from the homeless
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rate of the cluster. The variance of φi, denoted by Σ0, is chosen to encode
the belief that our most uncertain component is the intercept, the baseline
rate of homelessness. We fix Σ0 = diag(0.4, 0.0002, 0.0002). The choice of
0.4 for the intercept variance is quite diffuse, and, as seen in Figure 1b,
the posterior distributions for the intercept in clusters one, two, and three
are concentrated on values in the far right tail of the prior. The choice of
0.0002 for the variance of coefficients associated with housing affordability
and poverty encodes a strong prior belief that these parameters are positive,
but it does not rule out a negative association, as illustrated in Figure 1c,
where the posteriors for the housing affordability coefficients in clusters one,
two, and three concentrate on values closer to zero. The important take-
away is that the prior distribution is sufficiently diffuse to allow the data
a major contribution to the posterior, with clear Bayesian learning. While
Figures 1b and 1c present posterior distributions for individual coefficients,
we caution readers from interpreting these coefficients too deeply, as there
are complicated interactions between coefficients due to the EPA clustering
strategy. Instead, we focus on posterior predictive distributions presented
in Section 5. The remaining variance component is σ2ψi

∼ IG(3, 0.1), which
puts a diffuse prior on observational noise in homeless rates – encoding a
belief that in some CoCs, the homeless rate is close to the regression fit,
while in other CoCs, the rate fluctuates significantly due to random local
factors. Dahl et al. (2017) note the relationship between α and the concen-
tration parameter in the Dirichlet process, and we follow Escobar and West
(1995) in utilizing the conventional α ∼ Ga(1, 1) prior distribution. We note
that prior choices for V ar(βi,0), α and σ2ψi

impact the inferred number of
clusters. By choosing relatively diffuse priors for each, we give the data a
significant role in informing the number of clusters.

4. Markov chain Monte Carlo. Our objective is to sample from
the posterior distribution

p(φ̃, Z1:n, β1:n,1:T |N1:n,1:T , C1:n,1:T ).(4.1)

Our computational strategy is to condition on observations Ni,t and Ci,t
while numerically integrating each σ2ψi

, latent variables Hi,t and ψi,t, and
concentration parameter α from the joint posterior. Importantly, we also in-
tegrate over the permutation ω so that the posterior distribution is invariant
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to the order in which we assign CoCs in the EPA partitioning.

p(φ̃, Z1:n, β1:n,1:T |N1:n,1:T , C1:n,1:T )

=

∫
p(ψ1:n,1:T , H1:n,1:T , σ

2
ψ,1:n, α,ω, . . .

. . . φ̃, Z1:n, β1:n,1:T , |N1:n,1:T , C1:n,1:T )dH1:n,1:Tdψ1:n,1:Tdσ
2
ψ,1:ndαdω.

The computational scheme is a parameter expanded Gibbs sampler: to
integrate over ψi,t in the logistic model, we utilize Pólya-Gamma data aug-
mentation (Polson et al., 2013); to draw latent factor sequence βi,1:T , we
rely on forward filtering and backward sampling (FFBS); to sample ω, φ
and Z, we use the Gibbs steps of Dahl et al. (2017). The MCMC algorithm
is initialized by sampling from the posterior when (φ1, . . . , φn) is modeled
with a Dirichlet process mixture model (e.g., when f(Xi, Xj) = 1) using
the standard MCMC algorithms of Neal (2000). We run our MCMC al-
gorithm for 20,000 iterations and discard the first 10,000 as a burn-in. To
guarantee reproducible inference, we ran multiple MCMC chains initialized
at different parameter values. Posterior distributions and functionals from
each chain generated identical inferences. Trace plots and effective sample
size calculations for individual parameters give us additional confidence in
our posterior estimates. The MCMC simulation is developed in R (R Core
Team, 2017), and it took approximately 24 hours to run on a MacBook Pro.

A major focus of our analysis is computing the posterior predictive
distribution for the homeless rate in a new community,

pn+1,T |βn+1,T = 0, Xn+1,T , C1:n,1:T , N1:n,1:T .

Section 1 of the Supplement (Glynn et al., 2020) presents MCMC sampling
steps and constructs the posterior predictive from MCMC samples.

5. Results.

5.1. Inflection points in CoC-predictors. A primary objective of this
analysis is to identify levels of housing affordability and extreme poverty
which, once exceeded, predict significant increases in homeless rates. Identi-
fying these inflection points can help communities prepare for rapid growth
in homeless populations. In Figure 2, we summarize the relationship be-
tween homeless rates, housing affordability, and extreme poverty with the
posterior predictive distribution computed in the Supplement (Glynn et al.,
2020).

In Figure 2a, we predict the homeless rate as a function of housing
affordability when extreme poverty is 7%, approximately the sample average.
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For example, we expect a homeless rate of ≈ 0.40% (y-axis) in a community
where rental costs consume 40% (x-axis) of median income and extreme
poverty is on par with the national average. San Diego is an example of
a community with these characteristics. In 2017, the extreme poverty rate
in San Diego was 6.25% and ZRI consumed 39.28% of median income. The
estimated homeless rate in San Diego in 2017 was 0.36% – right in the middle
of the predicted range.

(a) Housing affordability (b) Inflection Prob. (c) Poverty rate

Fig 2: Cross-sections from the homeless rate surface. Left: Posterior predic-
tive distribution for homeless rates as ZRI/median income increases when
extreme poverty is 7%. The shaded intervals illustrate the 90% predictive
uncertainty intervals, and the dashed line represents the benchmark case
in which the naive homeless rate (pNaivei,t = Ci,t/Ni,t) is used for the anal-
ysis. The dark shaded region denotes the 30-34% region where inflection
points are likely. Middle: Posterior probability of inflection points in the
expected homeless rate as a function of housing affordability. The shaded
diamonds present the prior probability of an inflection point, reflecting our
prior belief that each point has a roughly equal probability of being an in-
flection point. Right: Posterior predictive distribution for the homeless rate
as a function of extreme poverty when housing affordability is 28%. The
shaded intervals illustrate the 90% predictive uncertainty intervals, and the
dashed line represents the benchmark case in which the naive homeless rate
(pNaivei,t = Ci,t/Ni,t) is used for the analysis.

To identify inflection points in housing affordability, we numerically
evaluate the second derivative of p̃(x∗) := E[pn+1,T |C1:n,1:T , N1:n,1:T ] for co-
variate vector X ′∗ =

[
1 x∗ 7

]
. To estimate the location of inflection points,

we compute the posterior probability that the second derivative p̃′′(x∗) ex-
ceeds threshold κ, corresponding to structural changes in the slope of p̃(x∗).
This probability is computed with posterior samples in equation 5.1.
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P
(
p̃′′(x∗) > κ

)
≈ 1

M

M∑
m=1

1{
p̃(m)(x∗+h)−2p̃(m)(x∗)+p̃(m)(x∗−h)

h2
>κ

}(5.1)

We classify x∗ as an inflection point if the probability that (p̃′′(x∗) > κ)
exceeds 0.5. When we apply this procedure with κ ≥ 0.00125 and h = 10,
a series of likely inflection points emerge from 30-34%, with 32% being the
most likely (see Figure 2b). In Figure 2a, we have marked the 30-34% region
with a dark shaded uncertainty interval. Observe that when ZRI as a percent
of median income is between 18-30%, the rate of increase in the expected
homeless rate is not nearly as sharp as the rate of increase from 34 - 50%.
A clear structural change occurs in this 30-34% range, which is particularly
noteworthy because the U.S. government defines a housing cost burden when
a family spends more than 30% of its household income on housing costs
(HUD, 2018). When families become acutely cost burdened, we find that
the expected homeless rate sharply increases.

In Figure 2c, we present the cross section of the predicted homeless
rate as a function of extreme poverty for a community where ZRI is 28% of
income, the sample average. The predictor vector is X ′∗ =

[
1 28 x∗

]
. We

interpret Figure 2c as following: the expected homeless rate is 0.20% (y-axis)
in a community where 8% (x-axis) of the population lives in extreme poverty
and relative housing costs are on par with the national average. The 90%
predictive interval ranges from 0.07% to more than 0.6%. In Albuquerque,
NM (8.1% in extreme poverty, 28.1% for ZRI/median income) we estimate
that in 2017 the homeless rate was 0.32% – again within the predicted
range. Observe in Figure 2c that the relationship between homeless rates
and extreme poverty is characterized by a single line. There are no estimated
inflection points in the rate of extreme poverty, as the slope of the line is
uniform.

To benchmark the homeless rate model in Section 3 against the stan-
dard method for calculating homeless rates, we computed the posterior pre-
dictive distribution in Figures 2a and 2c using the naive homeless rate,
pNaivei,t = Ci,t/Ni,t. The naive homeless rate is the current standard in both
academic research (see e.g. Byrne et al. (2013)) and policy analysis, and it is
currently used by HUD in its Annual Homeless Assessment Report (AHAR)

to Congress. In equation 3.4, we let ψNaivei,t = log

(
pNaive
i,t

1−pNaive
i,t

)
. Our com-

parison analysis ignores the underlying count data and two-stage binomial
thinning model in equations 3.2 and 3.3 and assumes that the homeless rates
are directly observed. The dashed lines in Figures 2a and 2c illustrate the
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naive homeless rate as a function of both housing affordability and extreme
poverty. Observe that the functional form in the naive estimates is nearly
identical to the homeless rates estimated in our full model, with the dif-
ference being the naive homeless rates are less than the implied rates from
our model. This is expected since our full model accounts for the imper-
fect accuracy in HUD’s point-in-time count data, following the method of
Glynn and Fox (2019). An important takeaway from Figure 2a is that the
posterior predictive of the naive homeless rate depends only on modeling
advances in the EPA regression and is not impacted by any prior choices on
count accuracy.

(a) Rate v. Aff (b) Rate v. Pov

Fig 3: The expected homeless rate from the posterior predictive distribution,
E[pn+1,T |C1:n,1:T , N1:n,1:T ]. Left: Homeless rate v. Affordability, stratified by
poverty. The black points represent the most likely inflection point for each
level of extreme poverty. Right: Homeless rate v. extreme poverty, stratified
by housing affordability.

To compare the Glynn and Fox (2019) model with the current EPA
model, we utilized the Widely Applicable Information Criterion (Vehtari
et al., 2017). To make the fairest comparison between the log-odds regression
model in Glynn and Fox (2019) and the EPA regression model, we ignored
the problem of count accuracy and compared the model fit strictly using
the naive homeless rate calculation as the response. The WAIC from the
present EPA regression (-1015.36) is significantly lower than the WAIC from
the Glynn and Fox model (215.42), indicating a superior model fit from the
EPA regression.
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In Figure 3a, we present the expected homeless rate as a function of
housing affordability, stratified by extreme poverty. The most likely inflec-
tion points at different levels of extreme poverty are marked by black points.
As the level of extreme poverty increases from 4% to 10%, the inflection
point in housing affordability slightly decreases from 32% to 29%. From an
applied perspective, this makes sense. As a larger share of a CoC contends
with extreme poverty, the homeless rate inflection point occurs at a lower
housing cost. Figure 3b illustrates the expected homeless rate as a func-
tion of extreme poverty, stratified by housing affordability. Observe that the
nearly linear relationship between homeless rates and extreme poverty holds
across a wide range of housing affordability values, and the slope steepens
as housing affordability increases from 28-38%. Interactions between covari-
ates and localized Bayesian learning are illustrated in the full homeless rate
surface, presented in Figure 2 in the Supplement (Glynn et al., 2020).

5.2. Clusters of CoCs. There is significant interest from a policy per-
spective in identifying a peer group of CoCs likely to benefit from the same
type of intervention. To form these peer groups, we identify frequent co-
occurences of CoCs i and j in the same cluster and compute a pairwise
similarity matrix from MCMC samples of Zi and Zj . Based on the poste-
rior probability of CoCs i and j sharing a cluster, we utilize the adjusted
Rand index of Hubert and Arabie (1985) to compute a point estimate of the
partition π̂381 following the approach of Fritsch and Ickstadt (2009).

We find six different clusters; however, most CoCs (373 of 381) are
assigned to clusters one, two, and three. Observe in Table 2 that, of the first
three clusters, cluster one has (on average) the lowest homeless rate (0.09%),
the most affordable housing (25.51%) and the lowest rate of extreme poverty
(5.91%). Of clusters one through three, cluster three has (on average) the
highest homeless rate (0.65%), the least affordable housing (37.41%), and
the highest rate of extreme poverty (7.30%). The largest cluster – both by
number of CoCs and by population – is cluster two, which is home to 50.16%
of the U.S. population. While only 13.85% of the total U.S. population lives
in cluster three, it contains 45.76% of the homeless included in the 2017 PIT
counts.

Although the model contains no specific mechanism for spatial pat-
terns in homeless rates, there is clear spatial structure in our cluster as-
signments. Observe in Figure 4 that cluster one is common in the Mid-
west, Mid-Atlantic, and parts of the South. Most of New England, Georgia,
Florida, the mountain west and southwest United States are assigned to
cluster two. Cluster three occupies much of the west coast – including San
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Cluster 1 2 3 4 5 6

Size (# of CoCs) 135 190 48 6 1 1
Share of Total Pop (%) 34.43 50.16 13.85 1.10 0.32 0.14

Share of PIT Count (%) 13.46 40.20 45.76 0.19 0.16 0.23
Homeless Rate (%) 0.09 0.19 0.65 0.04 0.09 0.36

Affordability Rate (%) 25.51 28.41 37.41 26.78 22.71 32.17
Poverty Rate (%) 5.91 6.76 7.30 7.11 4.38 5.22

Table 2
Cluster characteristics in EPA partitioning: The Share of Total Pop (%) and Share of

PIT Count (%) are the percentage of the total US population and HUD counted number
of homeless in each cluster in 2017. Homeless Rate (%) is the mean estimated homeless

rate. Affordability is the cluster-level mean of ZRI as a percentage of median income, and
poverty is the cluster-level mean of the extreme poverty rate.

Francisco, Portland (OR), and Seattle – as well as eastern metropolitan areas
in Boston, New York City, Washington, D.C., and Atlanta. The communities
in cluster three, with ZRI at 37.4% of median income on average, are well
above the inflection point range of 30-34% identified in Section 5.1. Figure 4
is a data-driven confirmation of observations made by homeless coordinators
and policy makers around the country: while homeless counts are generally
falling in most parts of the United States, there are pockets on both coast
where states of emergency have been declared to combat homeless crises.

Clusters four through six, which contain a total of eight CoCs, may not
be robust to the addition (or removal) of CoCs to the data set. For this
reason, we focus our interpretation on clusters one through three and do not
draw conclusions from clusters four through six.

Fig 4: Map of clusters in the continental United States (left) and the north-
east corridor (right) from Washington, D.C. to Boston, MA. Clusters exhibit
strong spatial structure.
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5.3. CoC-level latent factors. There are many dimensions of a commu-
nity. Poverty and housing affordability, while important covariates of a CoC,
may not adequately explain variation in homeless rates – particularly in the
presence of policy interventions aimed at reducing homelessness. To account
for the many unobserved contributors to homelessness in a community, we in-
clude community-level dynamic latent factors βi,1:T in our statistical model.
We interpret F ′iβi,t|C1:n,1:T , N1:n,1:T , as the deviation of the homeless rate in
CoC i from the rate expected of CoCs with similar covariates in the same
cluster. Recall from Section 3.2 that F ′i =

[
1 0

]
.

The Atlanta Continuum of Care provides an illustrative example of the
role that latent factors play in our analysis. Atlanta, a member of cluster
three in Section 5.2, has a particularly high homeless rate (0.94%) for a
CoC with housing costs at 31% of median income in 2017. Relative to peer
CoCs in cluster three with similar housing costs, the homeless rate in At-
lanta is significantly higher than expected (see Figure 5a). While the high
homeless rate in Atlanta is partly explained by the fact that 11.5% of the
population lives in extreme poverty, poverty and housing costs are an in-
complete accounting of the factors at play. Observe in Figure 5a that the

(a) Model Fit (b) Latent factors

Fig 5: Atlanta Continuum of Care (GA-500). Left: Model fit for the homeless
rate including latent factors (squares); the model fit for the homeless rate
excluding latent factors (diamonds); and the homeless rates of other CoCs
in cluster three (circles). Right: Posterior distribution for the percentage
increase in the homeless rate associated with latent factors in Atlanta from
2011-2017.
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estimated homeless rates in 2011-2017 (squares) are significantly higher than
the homeless rates predicted by housing affordability and extreme poverty
alone (diamonds). The underprediction indicates that other factors are con-
tributing to homelessness, which we model with the latent factor βi,t. Since
latent factors in Atlanta are adding to the homeless rate beyond the rate
expected of peers in cluster three with similar covariates, the posterior distri-
bution F ′iβi,T |C1:n,1:T , N1:n,1:T concentrates on positive values (Figure 5b).
We interpret Figure 5b as the percent increase in the predicted homeless
rate from a model that includes F ′iβi,t compared to the predicted rate when

F ′iβi,t = 0, expressed mathematically as 100 ×
(

1+exp{−X′i,tφi}
1+exp{−F ′iβi,t−X′i,tφi}

− 1
)

.

The negative trend observed in Figure 5b also helps explain why the home-
less rate in Atlanta has fallen over the years 2011 to 2017, despite the fact
that housing affordability has deteriorated from 27% of income in 2011 to
31% in 2017. The important takeaway is that some combination of factors
in Atlanta beyond housing affordability and poverty are contributing to this
lowered homeless rate, and we estimate this net factor for each CoC with
the the posterior F ′iβi,t|C1:n,1:T , N1:n,1:T . The latent factor distribution over
time provides a mechanism to evaluate the CoC’s changing environment for
homelessness – including policy interventions.

6. Discussion. In this paper, we present a Bayesian nonparametric
model of community-level homeless rates. The EPA regression model shares
information across CoCs where homeless rates are similarly related to co-
variates of a community, and we utilize posterior predictive distributions to
identify structural changes in homeless rates as a function of housing af-
fordability and extreme poverty. A main finding of the analysis is that the
expected homeless rate in a community exhibits a structural change when
ZRI as a percentage of median income is in the 30-34% range, a finding that
statistically connects community-level homelessness and the federal defini-
tion of affordable housing (HUD, 2018). We identify three dominant clusters
of CoCs that exhibit common relationships between homelessness and com-
munity features. Among the three main clusters, the lowest homeless rate,
most affordable housing, and lowest extreme poverty rate are found in clus-
ter one. Cluster three communities have, on average, the highest homeless
rate, the least affordable housing, and the most poverty.

Our findings extend prior research that examined the overall relation-
ship between community-level factors and homelessness in an important
way: We show that the relationship between homeless rates, housing afford-
ability, and extreme poverty follow a nonlinear functional form. This stands
in contrast to prior studies that have almost exclusively assumed the rela-
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tionship between such factors and homelessness to be linear. The study also
provides new insight into geographic patterns of homelessness in the United
States. A relatively small number of cities with large populations (cluster 3)
are experiencing surges in homelessness related to unaffordable housing and
extreme poverty. The average housing affordability metric is higher in clus-
ter three (37.41%) than the 30-34% region we identify, which partly explains
rapid growth in the homeless populations of many of these CoCs.

Despite statistical associations between housing affordability, extreme
poverty, and homelessness, the present analysis does not permit causal in-
ference. As a result, the implications of our results for crafting public policy
may be limited. Significantly modifying policy without first establishing a
strong causal link between housing affordability, extreme poverty, and home-
lessness would be a mistake. Causal inference on the relationship between
community-level characteristics and homelessness is an important direction
for future research. While our results may not be directly used to deter-
mine policy, the inflection point analysis is important to improve homeless
population monitoring and forecasting systems.

Our findings statistically link homelessness and the HUD guideline of
using a rent-to-income ratio of 30% as a standard measure of affordability.
This 30% rule–which has its origins in the so-called ”Brooke Amendment” to
the 1968 Fair Housing Act–has been criticized as being essentially arbitrary
in nature and for its failure to account for other factors that affect affordabil-
ity, such as family size and composition and geographic variation in the cost
of other goods and services besides housing (U.S. Department of Housing
and Urban Development, 2014). Despite these criticisms, our results suggest
broad increases in housing vulnerability in communities where the rent-to-
income ratio exceeds 30%. While we are unable to assert causality, and it is
possible that the 30-34% finding reflects rather than validates the current
HUD guideline, statistical evidence for wide-spread housing vulnerability
as renters become increasingly cost burdened is meaningful for improved
monitoring and forecasting. Our results serve as an important first step in
developing improved early warning systems for monitoring housing market
conditions and forecasting their impact on the demand for homeless services.

In addition, identification of distinct clusters of communities suggests
there is potential value in implementing strategically differentiated policy
interventions based on community characteristics, which would be a depar-
ture from current approaches. In prior research on the relationship between
community characteristics and rates of homelessness, factors identified as
key drivers of higher (or lower) rates of homelessness may have been subse-
quently used by communities as policy levers to be pulled in their efforts to
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address homelessness. However, prior research in this vein operated under
the implicit assumption that pulling the same levers with the same strength
and in the same direction will have an identical effect regardless of the com-
munity in question. Our findings suggest that such an assumption is likely
to be incorrect, and that communities would be wise to take a more nu-
anced approach in how they contend with structural factors in seeking to
reduce homelessness. More concretely, our identification of six clusters of
communities points to the potential need for multiple policy responses that
target the needs and structural determinants of homelessness in individual
communities.

A limitation of the current study is our use of the CoC as the primary
observational unit. Many CoCs are geographically large, with Rhode Island,
North Dakota, South Dakota, and Wyoming each representing statewide
CoCs. Housing affordability and extreme poverty measures at the CoC-level
may conceal dynamics of local markets, adding to the inference challenge
in some larger CoCs. While we do not know of better nationwide data on
homeless populations, we recognize the challenge of working with PIT counts
to investigate the relationship between homelessness and community covari-
ates. This research augments but is not a substitute for the invaluable local
knowledge of CoC-coordinators and service organizations in addressing the
needs of homeless populations in individual communities.

While the development of EPA regression is motivated by modeling
homeless rates, we believe it may be a useful method in other application
areas, particularly those challenged by data that is sparse in both time and
space. For example, crime, real estate transactions, and onset of rare disease
occur infrequently, and data is scarce at the community level. To estimate
the response surface, it is often necessary to pool data across communi-
ties with starkly different characteristics. EPA regression offers a principled
statistical framework for sharing information across related communities in
many applications, particularly those challenged by data that is sparse in
both time and space.
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